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ABSTRACT

Flux eliminating coils have received no little attention over the past thirty years as an alternative

for realizing lift in a MAGLEV system. When the magnets on board the vehicle are displaced from

the equilibrium or null flux point of these coils, they induce current in those coils which act to restore

the coil to its null flux or centerline position. The question being addressed in this paper is that of

how to choose the best coil for a given system. What appears at first glance to be an innocent

question is in fact one that is actually quite involved, encompassing both the global economics and

physics of the system. The real key in analyzing that question is to derive an optimization index or

functional which represents the cost of the system subject to constraints, the primary constraint being

that the vehicle lift itself at a certain threshold speed. Outlined in this paper is one scenario for

realizing a total system design which uses sequential quadratic programming techniques.

INTRODUCTION

Figure 1 shows a simple magnet and coil layout involving null flux and flux eliminating coils. In

inset (a), a pair of null flux coils is being moved past a set of magnets which direct flux in a single

direction through the coil. when the coil is displaced vertically downward with respect to the

magnet, the upper window of the null flux coil begins to link more flux than the lower window.

Because that flux is also changing with time, an induced voltage causes a current to flow which acts

to restore the coil to its centerline position, yielding a force in the upward direction of the coil. A

similar process is involved in the lower inset (b) of that figure. Here the magnets are stacked, unlike

poles above each other, unlike those in inset (a). The coils now form single loops, when the single

loop coil is offset from its null flux position, it begins to link flux in a similar fashion to the null flux

coil. As drawn, it is clear that the left most coil has more south pole shadowing it than north pole.

It will therefore have a net flux linking it which induces a current to again restore it to its null flux

position. The one advantage that the stacked magnet design has over the null flux design is that the

closure path for the magnetic field is shorter and therefore more efficient.
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Figure 1 Magaet Ind_oil gemnetryusedfof getting liN fo_ null flux Ind flux eliminating ooils.

Figure 2 shows a _ross-se_on of the second embodiment, the flux eliminating coil. In this _rout-

section is clear that there are two loops or "0" rings that are arranged side by side, one of the "0"

, d
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rings is in fact displaced into the page with respect to the other, so that the two form a phase shifted
pair. The lift associated with the coil pattern shown in Figure 2 is a function of both the offset
displacement d of the centerline of the coils with respect to the centerline of the magnets and the
excitation frequency. The excitation _equency is in fact specified by the velocity of the coils past the

i.e.,f = _,where _ - wavelength into the page. Note that the coils that are displacedmagnets,

electrically axially into the paper 900 with respect to the first set, link no flux at the instant in time

when the phase A coil links maximum flux. The objective is to suggest the best track design based
on the information realized through a computational analysis, delivering force as a function of

displacement and fi'equency. Specifically the objective would be to define the following:

1. The number of magnet c-sets on the vehicle.
2. The spacing of the magnets and the coils in the track.

3. Displacement distance d at lift off.
4. The commensurate properties associated with these parameters including the system cost per
mile, the vehicle weight, the drag forces, and the lift to weight ratio.
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Figure 3 Lift force on overlapped aluminum composite coils.
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PARAMETRIC ANALYSIS

The forces on the coils in Figure 2 are analyzed for a range of displacements and frequencies for

both aluminum and copper using a Boundary Element eddy current package (Oersted from

Integrated Engineering Software in Winnipeg, Canada). Shown in Figure 3 are the lift forces on

aluminum overlapped composite coils. The reader should recognize the familiar induction motor

torque/speed profile within these shapes. Because the forces were analyzed in 2D, all forces are

reported in Ibs/m of depth. Connectivity of the coilsisspecified by constrainm" g the vector potential

within each of the coils, and demanding that the 4_/7-d/ around a closed-loop surrounding the coils be
constrained so that the induced current within th_ top two coils is opposite in sign to that in the

lower two coils. In addition, the induced current was constrained to be the same for each conductor

cross-section.
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Figure 4 Current indm_ in the aluminum overlapped composite.

After the field is found everywhere, the induced current within the coils is determined also by

integrating _/7-a_ around each of the coils. Shown in Figure 4 is the current induced in the coils as

a function o_'the same parameters. Note that this current is independent of depth since both the

inductance/resistance and flux linkage scale the same with depth extension.

114



10000¸

2000 ¸

Copper Lift Forces
for different vertical offsets

O'

Loame
-I- o.25"
-+- o.5"
- _- - o.75"
--'4_'-" 1"

t •

• " I ,,A
,'" I 41"

""'t I f

I ,_4

, r" 4""

..°--

I

,i..- -o"

r-'-

lO 20 3o 40 50 6o
Fn,quency(Hz)

Figure 5 Lift forces on copper overlq)ped cxnnlmsite coils.

The primary reason why the force using aluminum coils is low is due to timing. The current is

not peaking at the right time. If the coil were resistance dominated, the current would be 90 ° out of

phase with the inducing current in the magnet, and no net current would result. Changing the coils to

copper roughly doubles the L/R time constant and greatly helps the force as witnessed by Figure 5.
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The commensurate current induced in these coils is displayed in Figure 6. As expected, the force

and current follow the same pattern.
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Figure 7 Lift foroe on two ooppex ooils eaw,h with a differeat thickness.

The ultimate objective is to minimize the cost of the long member, the track. Two coil

thicknesses were examined, one having a cross-section of 0.625" by 0.25" (10 turns of #9 wire) and

a second having a cross-section of 1.25" by 0.25" (20 turns of#9 wire). By way of underscoring the

importance of the larger 1.25" coils over the previous 0.625" coils, Figure 7 displays the different

forces expected when 1.25" copper coils are condensed to 0.625" in height. The force reduction

results from two issues. First, the timing due to the L/R ratio is such that the currents do not come

on opposite in phase to their source. Second, the currents are physically positioned closer to the

outer periphery of the field, where the fields are reduced in magnitude.

OPTIMIZATION SETUP

The optimization objective will be to minimize the cost of the magnets and wire in the track as

well as the drag at lift off_

,9-= ($wire + Smagnets),drag (1)

subject to the constraint that lift > weight at lift off. The system design is dictated by the desired

liftoff speed. Once the desired lifioffis defined, the four objective parameters listed on page 3 are

known. The approach adopted is as follows:
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1. Predict the forces and induced currents as a function of both offset distance d and

frequency f

2. Fit a complex polynomial.involving d and f to the force and induced current.
3. Use a sequential quadratic program to determine the best design topology

The equivalent frequency seen by the coils is dictated by the product of wave number k and

velocity v as
2_

kv=to _* mv : 2nf
2x

(2)

Where x is the axial distance between coils (see Figure 1). Thus the equivalent frequency is related

to the spacing between coils x as

f= _ (3)
2x

The process begins by fitting the force F per C set and induced current I to a vector of unknowns cf

and ca such that

aer=F/c (4)

Ae, : [. (5)

The actual current for each is fitted as

F=c I+C_C+C3X2 +C4X3+c_d+c6d2 +CTXd+csx 2d+cc, d2 +c Io(xd)2 +cl ix 4

with a similar fit for the induced current I. A total of m=24 trials were investigated, allowing the

construction of a matrix equation to determine the coefficients based on the m trials,

2
X 2 X 2

2
X m Xm

...x4 c, "p,

...x4 c_

i ! i i

4
•.. X m Cll .

Equation (5) was found to accurately track both force and induced current.

(6)

(7)

THE DESIGN SETUP

The objective function (1) involves 3 parameters which serve as the unknowns - the axial

winding displacement x, the offset distance d of the coils with respect to the magnets, and the

117



number of magnet C sets N. The magnet costs, wire costs, and drag at littoff must be represented in

terms of these three parameters. The distance x represents the outside axial distance of the coils. In

terms of the average height of the coils (h=7.325 '') and the average width (x-125"), the wire density

p, the price per pound P, and the length L of the track, the cost of the wire is

$wire = 2 d_,.,.,co,t(h+(x 1.25))*4co,W_.._et*0.22* i 25 *(21/x)pP*4 ,' " raus/system" (8)

The factor 2 multiplying L accounts for the half pole pitch placed coil. Each of the 12" magnets

employed cost $10,000. To allow room for the placement of the compensation winding, the magnets

must be 0.75" shorter than the pole pitch distance x. Thus the cost of N magnets for vehicles is

$magnets = N. $10,000 • Veh *(x - 0.75)/12. (9)

From the induced current in each coil, it is possible to compute the drag force in terms of the

average B field in the air gap. This drag of course depends on the relative offset distance d of the

coils with respect to the magnets. For the 4 sets of coils (2 sets being displaced a half pole pitch

axially), the drag force in pounds is

Drag = N*8*d*0.0254m/,*l*B/4.48_ah. (10)

Each brush set for a 12" section of magnet is estimated to weigh 100# with an additional 50# being

needed to account for the weight of the air cylinder controlling the actuators, yielding a brush weight

brush = 100x/12+50. (il)

Each magnet C set weighs approximately 400 Ibs with an additional 150 Ibs required to account for

the support struts. In terms of the burden, the vehicle weight is

wt _ burden +N* [650 ,(x-O. 75)/12 +50]. (12)

The burden for the test sled is only 640 lbs, whereas the burden for a typical people mover is 27,000

Ibs. The expected burden for the fully deployed 90' long high speed cruiser is 43,000 lbs. The lift to

drag ratio 1/d is

l/D -- wt/drag. (13)

The cost per mile for a length L of track is

cost�mile = ( $magnets +$wire )/L • 5280t_,,,t_ * 12 ,/p. (14)
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RESULTS

Table I with a 7001b load/C set

L M spd # x d N drag f/D wt Swtre $mag cost/ I FtC

a v /l 000 /I 000 * 106 * 106 trul¢ kA /1000

t. e *10 s

h

4000' C 30 6 12 1 51 4.35 14 60.7 1.13 2.87 5.28 3.42 1.19

LI

4000' A 35 6 12.3 1 38.2 3.71 14.3 52.86 1.12 2.21 4.4 3.87 1.38

1

4000' A 40 2 12 1 145 8.83 13.9 123.1 0.331 2.73 4.04 2.43 0.8-46

1

I0 males A 40 2 ........... 4.36 " 0.709

1

4000" C 40 2 14.8 0.906 35.6 2.74 20.4 55.9 1.06 0.834 2.50 3.4 1.57

II

10 miles C 40 2 17.12 0.82 45.9 2.55 27.4 70.0 13.42 1.25 1.47 2.70 1.53

U

4000' A 40 6 12 1 145 8.83 13.9 123.1 0.33 8.21 11.26 2.43 0.846

1

10 miles A 40 6 12 1 145 8.83 13.9 123.1 4.36 821 1.25 2.43 0.846

1

4000' C 40 6 13.77 .969 32 2.99 17.1 51.2 1.08 2.09 4.18 3.86 1.60

U

4000' A 80 2 14.7 0.929 293 2.55 19.8 50.6 0.31 0.683 1.31 3.76 1.73

1

10 miles A 80 2 16.98 0.795 38.4 2.18 29 62.7 3.93 1.04 0.497 2.85 1.63

1

4000' C 80 2 26.2 0.77 17,1 1.07 48 51.4 0.924 0.725 2.18 3 26 3.07

U

10 miles C 80 2 29.3 0.66 23.2 977 65.6 64.1 11.95 1.11 1.31 2.55 2.76

U

Table I shows the results for a variety of lifloff speeds, coil materials, lengths of track, and number

of vehicles for a 4 rail people mover system based 27,000 lb burden system. The design variables are

chosen to minimize (I) subject to the constraint that the vehicle lift itself at the specified lifloff

speed. Because the winding end turns become comparable to the coil length for x<12", the additional

constraint that x _ 12" was also enforced. As expected, when the design is asked to lift at low speeds,

x is forced to the smallest axial extension in an attempt to drive the effective frequency up. In

addition, the vehicle is forced to ride "low in the water" at a large "d"; this of course translates into a
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low lift/drag ratio, but the system has no choice at these low speeds. The superior ]JR time constant

of the oopper allows it to deliver a solution when none is available for ahmfimnn at low speeds. As

lift threshold _ the optimization _ofi_m _tem_ to pick the number of magnets N m

_crea_ d __ as _. _ _now_lare _ _m_ as _

1. As _ length of the track L m_ the Algorithm _m the cost of the w_ down

2. _ _ _ ofv_des m_ _e _lgo_m _es N down _ _ _ to_

_ for _ m_s.

3. _ x i._ _ _ _ce w_ co_ _ v_de wW _ w_ a g_ef d, _ _ n_o is

com_mm_ at _ _ ofm_ cost n_on.

_ooi_ nuxis _ - 5_'_

(a) Side view - Ih_md pmpubm c_

q_] :._::_i _". ' :_"i,,i ",;
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(b) side 'vi=w

Figure S Combimtion of flux eliminating and stacked ooils for lift and propuhfie_
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SYSTEM STAGING-A 3 STAGE RAIL BUILDUP

It should be apparent that the flux eliminating coil presented in Figure 8 (b) is not useful for

realizing propulsion forces. A separate stacked coil is recommended for propulsion with this design.

Figure 8 shows the incorooration of stacked coils for propulsion as well. American MAGLEV is

however testing a proprietary coil at present which performs all three functions - lift,

guidance, and propulsion. The first section of track up to 40 MPH where lift is unnecessary should

use only stacked coils centered on the magnets. The centered stacked coil makes the best use of the

field for propulsion. The lift coils in the track section between 40 and 80 MPH should be copper,

while above 80 MPH they should be aluminum. The stacked coils remain aluminum throughout.

With the proprietary single composite coil system being tested at present, the same sequence should

be followed - aluminum stacked 0 - 40 MPH, copper composite (40 MPH - 80 MPH), aluminum

composite (> 80 MPH).

Stage

Table II Distance sta_in_

velocity
range (m/s)

8 time

(s)

1.5m/s 2acceleration

distance

(m)

distance

fl
Accumulalc

Distance

fl

acceleration 0- 18 12 108 354 354

0 - 40 MPH

St. lift-off 18 - 36 12 324 1063 1417

copper
40 - 80MPH

lift-offAl 150MPH 36 - 66.96 20.6 1063 3487 4,904

Table II shows the appropriate distance for each of these stages assuming the vehicle accelerates at a

speed of 1.5m/s 2. In this scenario, the stacked coils would be used for the first 108m, then copper

composites for the next 324m, and overlapped aluminum composites for the remainder of the track.

Stage

acceleration

0 - 40MPH

1st lift off copper
40 - 80MPH

lift offAl

150MPH

Table III Distance stasin8 _

velocity range 8 time

(m/s) (s)

0- 18 18

18 - 36 18

36 - 66.96 30.96

1 m/s _acceleration

distance

m

distance

fl

Accumulated

Distance

fl

162 531 531

486 1,594 2126

1594 5,229 7355

(l.4miles)
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Table III suggests the corresponding lengths if the vehicle accelerates at only Im/s 2.

In such a hybrid system, a different optimization must be enforced, one in which a single coil span

distance x is selected which reflects the use of both copper and aluminum overlapped coils. The

modified merit function corresponding to (1) is

J- : $wire(, *drag(. + $wireAt *dragm + $mag71etsCdragcu *dragm • (! 5)

Note that the modified merit function must separately account for the drag during the copper stage

drag cu and the aluminum stage drags. The dual constraint is that the vehicle lift itself at 40MPH

with the copper coils and also at 80MPH using the aluminum coils.

The results of the hybrid optimization are summarized in Table IV

Table IV itybrid System 10 miles 486m copper @ each end, 4 vertical rails
CUlift @ 40MPH, AI lift @ 80MPt!

Minimize[ $wire <. *dragc_ +$wire At*drag Al+mags * Cdragc_ *dragm]

Row Burden I,

27000 10 mile

43000 10 mile

*640 1.4miles

ve x

h

6 !5.84

6 15.35

1 13.99

d_ d,_ N

0.94 0.82 35.1

0.96 0.84 53.1

0.46 0.42 4

1000

2.72 2.25

4.46 3.7

0.087 0.077

ffDcu

21.1

24.3

43

Row wt/ ¢/D _a wire wire I_ I_ cost/ F/C set
1000 Cu AI mile 1000

57.4 25.4 0.827 3.76 3.3 3.14 0.724 1.64

87.7 23.7 0.835 3.8 3.48 3.31 0.851 1.65

3.77 48.4 0.429 .165 1.88 1.84 0.456 0.927

* 2 rails only

The 3 rows of the lower table inset correspond to those in the upper one. The weight burden for the

third row corresponds to that for the test sled given the weight associated with each magnet as

dictated by (12). This would suggest that the ideal spacing x of the coils for the test track is 13.99",

but is closer to 16" for a 10 mile people mover having a burden of 27,000 lbs.
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SYSTEM SENSITIVITY

To what extent are the results sensitive to the weight load associated with each magnet C set?

As suggested by (12), the weight associated with each 12" C set is 386-1bs self weight, 164-1bs

support structure, and 150-1bs of brush hardware for a total load of 700 lbs. By more efficient

support of both the brush mechanisms and perhaps carbon composite struts, this weight could

be substantially reduced. If 150-1bs could be shed from this figure, the modified vehicle weight
would become

wt = burden + N*[550*(x-0.75)/12]. (16)

L M s # x d

a p v
t. e •

• h
d

4000fl C 3 6 12.0 .943 42.7 3.26

U 0

4000fl A 3 6 12.0 ! ! 53 7,6
1 5

4000fl C 3 6 12.8 0.87 36.7 2.65
u 5

4000fl A 4 2 12.0 I 82 4973

! 0

I0 A 4 2 12.0 0.995 83 4963
mile I 0

400011 C 4 2 15.4 0.778 36 1.964

u 0

10 C 4 2 26 0.932 45 1,793
mile u 0

4000fl A 4 6 12.0 ! 82.0 4973
I 0

10 A 4 6 12.0 I 82.0 4973

mile I 0

400011 C 4 6 14.2 0.844 31.4 2180

u 0

400011 A 8 2 15.2 0.815 28.5 1,880
I 0

10 A 8 2 17.5 0.674 39.3 1,562
mile I 0

4000// C 8 2 27 0.67 | 7.5 0.82

u 0

IO ] C 8 2 30.5 0.56 25 073
mile I u 0

!

Table V with • 5501b Ioad/Cset

N drag/ I/D aq Swift Sma8 cost/ 1
1000 I000 *!_ *10' mile kA

,I0,_
1000

15.04 49.1 1.13 2.41 4.67 3.24 !.15

13.9 ! 05.9 0.33 8.61 11.8 1.99 0.69

17.8 47.23 I.! I 2.21 4.37 3.31 1.29

14 69.3 0.33 154 2.47 2.43 0.85

14.1 69,6 4.36 1.55 0.59 2.42 0.84

26 50.9 1.05 0.867 2.53 2.84 1.43

45 81 .I 12.1 ! .97 1.41 1.71 1.80

13.9 69.3 0.33 4.62 6.53 2.43 0.846

,,

13.9 69.3 4.36 4.62 0.90 2.93 0.846

21.3 46.7 1.07 2.116 4.21 3.3 1.48

24.2 45.9 0.31 0.688 1.31 324 1.61

36.6 57.2 3.91 I. 1 0.50 2.36

58.7 48.1 0.92 0.767 2.22 2.79

83 60.8 11.9 123 131 2.I0

J A J

1.45

2.79

2.,t5
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Table V shows how the design parameters change if such a reduction could be realized. The lift to

drag ratios are greatly enhanced and the overall weight of the vehicle is reduced by 10,000-1bs.

The advantages underscore the importance of expending every effort to keep the support and

brush weight burden per magnet C set to a minimum. The column marked I indicates the current

induced in any one (1 turn) coil of the overlapped coil.

CONCLUSIONS

The design of a complete MAGLEV system is indeed somewhat complicated, involving most

critically the desired threshold speed as an input parameter. The directive to minimize cost is of

course integral to the design. Towards this end a constrained optimization using sequential

quadratic programming is employed to great benefit for minimizing an energy functional. A high

order polynomial fit easily obtained using QR decomposition, proves to have a smoothly

differentiable function to be operated on by the optimization program. The end result is a process

that allows for the characterization of a pole pitch of the winding in the track and the cost for the

entire system.
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